
Chapter 8 - Software Reliability Measurement Experience

In this chapter, we describe a recent study of software
reliability measurement methods that was conducted at the Jet
Propulsion Laboratory. The first section of the chapter, section
8.1, summarizes the study , characterizes the participating
projects, describes the available data, and summarizes the study’s
results.

The second section, 8.2, gives details on defining and
collecting failure data as well as selecting software reliability
measurement tools. In the JPL study, we found that one of the most
important parts of a software reliability measurement program is
identifying the data to be collected and setting up accurate data
collection mechanisms.

Section 8.3 presents the results of the study, comparing the
predictions made by the various models and drawing conclusions from
the comparisons. Section 8.4 discusses one particular finding of
the study in more detail - we found that a linear combination of
model results tends to yield more accurate predictions than
individual models themselves over the data sets we examined.

Section 8.5 summarizes the main points of the chapter,
suggests areas for further study.
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In October, 1989, the Jet Propu]si.on Laboratory (JPL)
Directorts Discretionary Fund funded a proposal to study the ways
in which software reliability measurement techniques might be
applied to JPL and other NASA software development efforts. This
effort continued over the next two years, analyzing failure data
from previous and current JPL projects. The study resulted in a
set of recommendations for the application of software reliability
measurement techniques, which will be discussed in this chapter.

8.1.1 purDose of Stud.u.

There were 4 major goals in the JPL study. These were:

1. Assess the impact of softwarg components on the overal~
~stem reliability in the.4PL environment For. ..—. ~
representative JPL-devel.oped systems, we wanted to have
a idea of the extent to which the software components’
reliability would affect the overall system reliability.
The following example shows the extent to which the
software’s reliability may affect the overall system
reliability for one particular type of JPL system.
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Figure 1 shows a system with the following software
characteristics:

1. Heterogeneous distributed operating system
2. 5648 programs
3. 324,500 lines of high-level. language source code
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FlgUrO 1 - System Block Diagram

The MTBFs for each hardware system component. are:

SYS1 hardware - 280 hours
SYS2 hardware - 387 hours

The SYS2 redundancy block in Figure 1 represents a 2-out-
of-3 structure, yielding a MTBF of 5000 hours for that
blockts hardware.

LAN ‘---------------------- 10,000 hours
GEN ‘---------------------- 600 hours
Supervisory SYS2 hardware - 387 hours

If the reliability of SYS1 and SYS2 software. is assumed
to be 1, the estimated MTBF for the system is 123.1
hours.

However, the methods described in section 2.3.2.1 of
this handbook and [RADC87] can be used
reliability of the software components.
use measurements of the software and
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process to estimate the error density that would be seen
at the end of the implementation phase, prior to my
actual testina that would occur. Making assumptions
about the usage patterns of the software and using infor-
mation about the speed of the computers, this error
density can be used to estimate the fai.1.ure rate that
would be seen at the start of system test. Using these
methods, the estimated MTBF for the software was ,11.9
minutes. This would translate into an estimated MTBF for
the system of about 11.9 minutes, a significant departure
from the 123.1 hours initially estimated.

This system is typical of many current systems in
that most of its functionality is implemented in the
software components. There are two observations that can
be made at this point. The first is that in systems of
the type shown in this example, the reliability of the
software is the dominant factor in determining overall
system reliability. Therefore, a reliability of 1 for
the software component of the system should not be
assumed in estimating system reliability. Failure to
take the software reliability into account will result in
grossly inaccurate estj.mates and predictions of the
system’s failure behavj.or. The second observation,
related to the first, is that for a given system, the
reliability c)f the hardware components tends to be high
quite early in the system development life cycle. The
reliability of the software components, however, only
increases late in the life cycle during the testing
phases, as faults in the those components are detected
and removed.

2. Develop uuanti.tative~ftware reliability models for JPLK
During this study, we wanted to look at currently-
available software reliability measurement techniques and
identify those that would be applicable to JPL software
development efforts. Fortunately, there has been a great
deal of research in this area over the past 20 years, so
there was no lack of information in this area. The
methods we looked at can be roughly categorized as being
either execution-based or early prediction. The
execution based techniques are those that can be used
only after the software has been executed and failures
have been observed. These methods tend to be used
starting with subsystem integration and continuing
through system integration, acceptance test, and
operations. Early prediction methods attempt to predict
the reliability of the software prior to the start of the
test phase, using measurements of product and development
process characteristics. [RADC87] is an example of such
a method. At the time of the study, almost all of the
available methods were execution-based.
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3. Refine and validate models usinq JPL software failu,,~
data. After identifying appropriate software reliability
measurement techniques for JPL software development
efforts, we wanted to validate and refine these
techniques. The major refinement was to devise a methocl
of combining model results that tended to yield more
accurate predictions than the components of the
combination.

4. Devel.oP guidelines for the app lication_of software
reliability modelinq t~hniques. During the study, we
developed a set of guidelines that could be used by
software project managers, line management, ancl
development personnel to specify and implement a software
reliability measurement program. These guidelines,
available in the form of a JPL publication [JPL91], cover
the following points:

a. Establishing software reliability objectives.
b. Preliminary software reliability model selection.
c. Setting up data collection mechanisms.
d. Choosing software reliability measurement tools.
e. Final software reliability model selection.
f. Model application and application issues.

The guidebook also provides brief descriptions of some of
the more widely-used software reliability models,
describes the benefits of using these
techniques,

modeling
and also discusses their limitations.

L.L_2 Proiect Selection and Characterization

For this study, we decided to look at failure data from
previous and current JPL flight projects. We also analyzed failure
data from a JPL-developed ground-based system for tracking ancl
acquiring data from Earth resources satellites in high-inclination
orbits. Finally, we analyzed previously-published failure data
[MUSA80] for ground-based systems. This variety of data would give
us a chance to see whether the reliability measurement techniques
developed for one type of development effort would work well for
another.

Each of the flight projects developed a planetary exploration
spacecraft, along with the ground support software. For each
spacecraft, the flight software was about 15,000 source lines of
code. In most cases, the software was split between two processors
- one to control the spacecraft attitude, and the other to process
uplinked commands and relay science and engineering telemetry back
to the mission operators. For the flight projects, most of the
software was written in assembly language.
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The resources satellites tracking and data acquisition system
contained about 100,000 source lines of code, and was written in a
mixture of C, FORTRAN, and various database query languages.

8.1.3 Characterization of Avajlable Data

For all of the JPL, efforts, the following data was available:

1. Date on which a failure occurred.
2. Failure description.
3. Recommended corrective action.
4. Corrective ac:tion taken.
5. Date on which failure report was closed.

For each of the flight projects, the severity of each failure was
also available.

We can see right away that not quite enough information is
available to apply software reliability models. Recall that to use
software reliability models, data in the form of failure counts and
test interval lengths, or time between successive failures is
needed. The number of failures could certainly be counted, but.
test interval lengths had not been systematically recorded. At.
this point, it was necessary to interview members of the various
development teams to get some idea of what the staffing profile
looked like during the testing phases. In some cases we were able
to get the necessary information from the development staff - in
one specific case, one of the investigators for this study had
previously been a member of the development staff for one of the
projects during software integration, and was able to recall enough
about the testing phase to provide fairly accurate information
about the length of each test interval. For about half the efforts
we studied, however, we were unable to get reliable information
about test interval lengths. In these cases, we had use our
knowledge of other, similar development efforts to make estimates
of test interval lengths. This situation influenced the content of
the guidebook, which contains a fairly detailed set of
recommendations about collecting failure data.

8.1.4 Summary of Results

One of the most important things we discovered is that for the
failure data we analyzed, no one model was consistently the best.
It was frequently the case that a model that had performed well for
one set of JPL failure data would perform badly for a different.
set. We therefore recommended that for any development effort,
several models, each making different assumptions about the testing
and debugging process, be simultaneously be applied to the failure
data. We also recommended that each model~s applicability to the
failure data be continuously monitored. Traditional goodness-of-.
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fit tests, such as the Chi-Square or Kolmogorov-Smirnov tests, can
be used. In addition, the methods described in [GHALY86] are also
strongly recommended.

Another discovery was that of the software development efforts
we studied, only one specified a set of reliability requirements
that we felt were measurable. Strictly speaking, it is not
necessary to have a reliability requirement for system in order tc)
apply software reliability measurement techniques. It is quite
possible to measure a software system’s reliability during test and
make predictions of future behavior. However, the existence of a
requirement is very helpful in that;

1. Specifying a reliability requirement helps the users and
developers focus on the components of the system that.
will have the most effect on the system’s overall.
reliability. Potentially unreliable components can be
respecified or redesigned to increase their reliability.

2. A reliability requirement will serve as a goal to be
achieved during the development effort. During the
testing phases, software developers and managers can
estimate software reliability and determine how close
they are to the required value. The difference between
current and required reliability can be converted into
estimates of the time and resources that will be required
to achieve the goal.

We also discovered that one of the most important. aspects of
setting up a software reliability measurement program is
identifying the data to be collected and setting up a data
collection mechanism. We found that development organizations
generally have the capability to collect the type of data that is
required to use software reliability measurement techniques. Every
software development effort that we looked at has a mechanism for
recording and tracking failures that are observed during the
testing phases and during operations. At the time of the study,
most projects of which we are aware also had requirements for the
test staff to keep an activity log during the testing phases.
Properly used, these data collection mechanisms would provide
accurate failure data in a form that could easily be used by many
currently-available software reliability models. However, since
many software managers and developers are not aware of the types of
analysis that can be done with this data, they do not devote the
effort required to ensure that the collected data is complete and
accurate.

Finally, we discovered that a properly-defined linear
combination of model results produced more accurate predictions
over the set of failure data that we analyzed than any one
individual model. Of the various methods of forming combinations,
we found that one in which all components of the combination are
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given equal weight produced surprisingly good results [LYU91a].
Other methods in which weights are dynamically assigned to
components of the combination require more computation, but produce
better results than the statically-weighted method [I,YU92].

~ Reliability Requirement Specification, F~lure Dat.~
Collection, and Model_.App_l.ication

8.2.1 Establishing+oftware Rel>abjlity Requirements

Software reliability modeling techniques are used to predict
a software system’s failure behavior during test and operations.
Software reliability requirements are specified during earlier
development phases, and these modeling techniques are used to
estimate the resources that will be required to achieve those
requirements. The resource requirements are translated into
testing schedules and budgets. Resource estimates are compared to
the resources actually available to make quantitative, rather than
qualitative, statements concerning achievement of the reliability
requirements.

8.2.1.1 Expressing Software Reliability

Reliability and reliability-related requirements can be
expressed in one of the three following ways:

1. Probability of failure-free operation over a specified
time interval.

2* Mean time to failure (MTTF).
3* Expected number of failures per unit time interval

(failure intensity).

The first form, the accepted definition of software reliability, is
a probabilistic statement concerning the softwarets failure
behavior. The other two forms can be considered to be related to
reliability. Reliability and reliability-related requirements must
be stated in quantitative term.’ Otherwise, it will not be
possible to determine whether the requirements have been met. To
help in understanding how to develop these requirements, examples
of testable and untestable reliability requirements are given in
the following paragraphs.

The following statements, paraphrased from a JPL software
development effort, represent a requirement for which software
reliability modeling techniques can be used to determine the degree
to which that requirement has been met. “Reliability quantifies
the ability of the system to perform a required function under the
stated conditions for a period of time. Reliability is measured by
the mean time between failures of a critical component. Under the
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expected operational conditions, documented in paragraph [TBD] of
this requirements document, the probability of the MTTF for the
software being greater than or equal to 720 hours shall be 90%.!1

The above requirement is stated in a testable manner. If the
expected operational conditions are stated in terms of the
operational hardware configuration and the fraction of time each
major functional area is expected to be used (the operational
profile), the test staff can then design tests to simulate expected
usage patterns and use reliability estimates made during these
tests to predict operational reliability.

Confidence bounds should be associated with reliability or
reliability-related requirements. If the above MTTF requirement
had been stated as being simply 720 hours, it would have been
possible to meet that requirement with a very wide confidence
interval (e.g. 90% probability of the MTTF lying between 200 and
1240 hours). This could have resulted in the delivery of
operational software whose MTTF was considerably less than the
intended 720 hours. Yet, the end users of the delivered software
would believe that the reliability requirement had been met. Not.
until the software was actually operated would the users realize
the discrepancy. To avoid this problem, express the reliability
requirement as the minimum value of the confidence interval. This
will allow the end users to know the probability of the software
meeting its reliability requirement, and permit them to plan
accordingly.

An example of an untestable reliability-related requirement is
now given. Again, the text is paraphrased from that found in a JPI,
development effortls system requirements document. “The system is
designed to degrade gracefully in case of failures. System fault.
protection shall ensure that no error or component failures will
compromise as a first priority, [safety restriction], and as a
second priority, minimum mission science objectives stated in
paragraph [TBD]. Accordingly, each instrument shall be designed S6
that if one fails (either through hardware or software failures),
it will not jeopardize the safety of the system or damage adjacent
instruments. This includes provision for isolation from the system
via the instrument power supply. If a system fault occurs, the
system will automatically stop any science data gathering and go to
a safe state. After a safe state is achieved and subsystems are
re-initialized, science can be resumed.”

The foregoing requirement does not provide a basis against.
which the failure behavior of the system under development can be
measured, as it contains no quantitative statements concerning the
system’s failure behavior. Rather, it is a statement of design
constraints that are intended to localize damage resulting from a
component failure to the immediate area (e.g. assembly, subsystem)
in which the failure occurred. During subsequent phases of system
development, it is indeed possible to determine whether such
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constraints have been reflected in the system design and
implementation. However, this information alone is not sufficient
to make quantitative statements concerning the system’s failure
behavior. Although specifying constraints such as these is an
important aspect of system specification, specific reliability
requirements, similar in form to the first reliability requirement
discussed in this section, would have to be provided if it were
intended to use reliability estimation techniques to determine
compliance to a reliability requirement.

8.2.1.2 Specifvinq Reliability mcwirement~

To specify reliabj.lity requirements, use one or more of the
three methods described below. The methods are:

1. System balance.
2. Release date.
3. Life cycle cost optimization.

It is possible to use one of these methods for developing the
requirements for one component of the system, and another for a
separate component.

The system balance method is primarily used t.o allocate
reliabilities among components of a system based on the overall
reliability requirement for that system. The basic principle of
this method is to balance the difficulty of development work on
different components of the system. The components having the most
severe functional requirements or are the. most technologically
advanced are assigned less stringent reliability requirements. In
this way, the overall reliability requirement for the system is met
while minimizing the effort required to implement the most complex
components. For software, this might translate to assigning less
stringent reliability requirements to functions never before
implemented or functions based on untried algorithms. This
approach generally leads to the least costly development effort in
the minimum time. The system balance method is frequently used in
developing military systems.

The second approach is used when the release date is par-
ticularly critical. This is appropriate for flight systems facing
a fixed launch window. The release date is kept fixed in this
approach. The reliability requirement is either established by
available resources and funds, or is traded off against these
items. With this approach, it is desirable to know how failure
intensity trades off with release date. First, the way in which
the failure intensity trades off with software execution time is
determined. This execution time is then converted to calendar
time. The following example uses the Goel-Okumoto and Muss-Okumoto
models.
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For the Goel-Okumoto model, the relationship between the ratio
of failure intensity change during test and the execution time is
given by:

=’ elapsed execution time
&‘= initial failure intensity
4= required failure intensity

b = failure intensity decay parameter

For the Muss-Okumoto model, this relationship is given by:

%, &, and ~ as above
(1 = failure intensity decay parameter

For this example, the failure history data from one of the testing
phases of a JPL flight program is used. Applying the Goel-Okumoto
and Muss-Okumoto models to this data, the following model parameter
and failure intensity estimates are obtained:

r“:”:::::::::[ -.
Goel-Okumoto Muss-Okumoto 1

&= ““”.4403 failures/ ““4 = ~;;;”~~”lureS/ ‘-’”
CPU hour

= 202.52 failures e = 1.693x10-G/failure
: = 6.044 X 10-q

per failure
.—

The above equations can be used to determine the amount of test
time that will be needed for various failure intensity improvement
factors:

ailure Intensity

:::_-:l:::”!:::

Execution Time (CPU Hours)
mprovement Factor

4/4 Goel-Okumoto Muss-Okumoto-. —-
10 1058 2916

100 2118 32076
1000 3177 323,677

10000 4236 3,239,690
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The relationship of execution time to calendar time will vary with
the test phase, development methods, and the type of software under
development. Knowledge of how the failure intensity ratio varies
with execution time can be used to determine the general shape of
the relationship between calendar time and failure intensity ratio.
An example of this relationship, adapted from [MUSA87], is shown in
Figure 2. This relationship can be used to determine an attainable
failure intensity ratio, given the release date and available
resources. The failure intensity requirement can then be obtained
from this ratio.

Note the differences between the predictions made by the two
models. In the Muss-Okumoto model, the relationship between
additional execution time needed and the improvement factor is
linear, while in the Goel-Okumoto model it is logarithmic. At this
point, a choice between the two models must be made. Since it is
not possible to know a priori which model is best suited to the
data [6], the applicability of models to a set of failure data must.
be evaluated while the models are being applied. Techniques for
determining model applicability, based on those reported in
[GHALY86], are summarized in paragraph 8.2.8.2. Once the model
most applicable to the failure data has been identified, that.
modells relationship between failure intensity” ratio and execution
time can be used in conjunction with the relationship between
execution and calendar time to determine the failure intensity
requirement.

Logarithmic
Poisson

1
LoFailure intensity mtio ~

F

Figure 2 - Failure Intensity Ratio vs. Calendar Time
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The third approach, life cycle cost optimization, is described
in the following paragraphs. Although this technique would be
difficult to apply to spacecraft flight software (since the launch
date is usually fixed), it would work well for ground-based
software not directly in the uplink or downlink path (e.g. image
processing software, long-term spacecraft scheduling, ground-basecl
spacecraft simulation) . The basis for optimization in this
technique is the assumption that reliability improvement i:;
obtained by more extensive testing. Costs and schedules for non--
testing phases are assumed to be constant. The part of development
cost due to testing decreases with higher failure intensity
requirements , while the operational. cost increases. The total cost
therefore has a minimum. This is shown below in Figure 3.

pie>
1,  (,,,, q,, ,., ,,, O,,  ,ct  l,,

Figure 3 - Test, Operational,

.-. . . . I

and Total Cost

as a function of failureTo find this minimum, testing cost
intensity must be computed. If testing cost can be related to
calendar time, and if the relationship between calendar and
execution time is known, this calculation can be done for a
specific model. Similarly, the operational cost as a function of
failure intensity must be computed. The following costs must be
considered:

1. Terminating an improperly functioning program in an
orderly manner.

2. Reconstructing affected databases.

3. Restarting the program.
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4. Determining the cause(s) of the failure.

5. Developing procedures to prevent further failures of that
type.

6. Repairing the fault(s) causing the failure if the
severity and criticality of the failure warrants
corrective action.

7. Testing the software to validate any repairs.

8. Effect of similar failures in the future on mission or
program success.

Determination of the failure intensity requirement then becomes a
constrained-minimum problem that can be solved analytically or
numerically.

A closed form expressic~n for the operational cost of failures is
difficult, if not impossible, to obtain. Analyzing the failure
history of similar historical projects would seem to be an
effective way of estimating the costs, since institutional problem
reporting and tracking mechanisms require that the effort required
to identify and correct a problem be recorded along with the
problem description. Frequently, however, this information is not
recorded, nor is it necessarily accurate when i.t is recorded.
Without a statistically significant universe of projects to
analyze, determination of the operational cost of failure becomes
impossible. This method for determining failure intensity
requirements is not recommended unless there is a well-established,
practical mechanism for systematically recording and tracking
operational failure cost.

8.2.2 Settinq up a Data Collection Process

When setting up a software reliability measurement program,
there are several pitfalls to be avoided. First, there is often
the notion that every bit of information about the program and what
happens to it as it evolves over the life cycle needs to be kept.
Too many organizations do not have a clearly defined objective for
their data collection process. As a result, much effort is expend-
ed with little gain. It is often felt that all of the data is
necessary so that if someone identifies a specific objective, the
pertinent data to support it has most likely been gathered. Fre-
quently, this approach results in a costly impact on the software
development process with little or no positive impact. There have
been many instances in which large data collection efforts have
been implemented without any capability to analyze the data.
Clearly defined objectives are necessary to help define the meas-
urement requirements. In addition, when a large amount of data is
required, it is usually the development staff that is affected.
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Cost and schedule suffer because of the additional effort of
collecting the data. Project management complains about the large
amount of overhead involved in the data collection without any
constructive feedback that could help the development process.

Use the following sequence of steps to set up a data
collection process. These steps are based on work done by the AIAA
Space-Based Observation Systems Committee on Standards (SBOS COS)
as well as work done in this study.

1. Establish the objectives. The need for this step has
just been discussed. However, the importance of doing
this cannot be overemphasized. Establishing the
objectives is often the distinguishing point between
successful and unsuccessful data collection efforts.

2. Develop a plan for the data collection process. Involve
all of the parties that will be involved in the data
collection and analysis. This includes designers,
coders, testers, QA staff, and line and project software
managers. This insures that all parties understand what
is being done and the impact it will have on their
respective organizations. The planning should include
the objectives for the data collection and a data
collection plan. Address the following questions:

a. How often will the data be gathered?
b. By whom will the data be gathered?
c. In what form will the data be gathered?
d. How will the data be processed, and how will it be

stored?
e. How will the data collection process be monitored

to insure the integrity of the data and that the
objectives are being met?

f. Can existing mechanisms be used to collect the data
and meet the objectives?

3. If any tools have been identified in the collection
process, their availability, maturity and useability must
be assessed. Commercially available tools must not be
assumed to be superior than internally developed tools.
Reliability, ease-of-use, robustness, and support are
factors to be evaluated together with the application
requirements. If tools are to be developed internally,
plan adequate resources - cost and schedule - for the
development and acceptance testing of the tool.

4. Train all parties in use of the tools. The data
collectors must to understand the purpose of the
measurements and know explicitly what data is to be
collected. Data analysts must understand a tool~s
analysis capabilities and limitations.
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6.

7.

8.

9.

8. 2.3

Perform a trial run of the data plan to iron out any
problems and misconceptions. This can save a significant
amount of time and effort during software development.
If prototyping is being done to help specify requirements
or to try out a new development method, the !~trial run~t
data collection could be done during the prototyping
effort.

IMPLEMENT THE PLAN.

Monitor the process on a regular basis to provide
assurance that objectives are met and that the software
is meeting the established reliability goals.

Evaluate the data on a regular basis. Donrt make the
reliability assessment after software delivery. Waiting
until after delivery defeats the usefulness of software
reliability modeling because you have not used the
information for managing the development process. Based
on the experiences reported in [LYU91], [LYU91a], and
[LYU91b], weekly evaluation seems appropriate for many
development efforts.

Provide feedback to all parties. This should be done as
early as possible during data collection and analysis. It
is especially important to do so at the end of the
development effort. It is very important to provide
feedback to those involved in data collection and.
analysis so they will be aware of the impacts of their
efforts. Parties who are given feedback will be more
inclined to support future efforts, as they will have a
sense of efficacy and personal pride in their
accomplishments.

Defininq Data to be Collected

A significant fraction of the data required is already tracked
by existing JPL data collection systems. These include the
Problem/Failure Report, (P/FR) , the Failure Report (FR) , the
Incident/Surprise/Anomaly Report (ISAR) , and the Discrepancy Report
(DR) systems. Collect the following information during those
testing phases for which reliability estimates will be made.

1. Time between successive failures. Collect the execution
time between successive failures. If execution time is
unavailable, testing time between successive failures,
measured by calendar time, can be used as a basis of
approximation. (This may result in less accurate
estimates of reliability behavior.) Collect the start
and completion time of each test session. Collect the
times between failures (interfailure times).
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If interfailure times cannot be collected, then collect
test interval lengths and the number of failures
encountered during each test interval. Failure frequency
information seems to be more easily collected than
interfailure times. Test interval lengths must be
accurately recorded for usable estimates to be made with
this type of data. Also collect the CPU utilization
during the test periods to determine the relationship
between CPU and calendar time.

For many development efforts, failure frequency informa-
tion is the only available type. However, some software
reliability tools can use only interfailure times as
input. In this instance, the failure frequency data can
be transformed to time-between-failures data in one of
two ways. ‘rhe first way is to randomly allocate the
failures over the length of the time interval. According
to [MUSA87], for many models this randomization will
result in estimation errors of less than 15%. A second
way, easier to implement, is to allocate the failures
uniformly over the interval length. For example, if an
interval is three hours in length and 3 failures occurred
during that interval, the time between successive
failures would then be one hour.

Recall that the way in which uncertainty in the reported
failure times affects the accuracy of modeling results.
Problem reporting mechanisms should be structured such
that the mechanistnls resolution is greater than the
average interfailure time throughout the test cycle.

2. Functional area tested during each test interval. This
can be done with reference to a software requirements
document or a software build plan. To illustrate the
importance of tracking this information, reliability
estimates made if this information is tracked are
compared belc~w to reliability estimates using the same
failure data but not tracking the functional areas
tested. Failure data from the software integration
testing phase of subsystem from a previous JPL
development effort was used for this example. The
software reliability estimates were made using the
public-domain software reliability modeling tool SMERFS.
The Goel-Okumoto NHPP model was applied to the data. The
software was assumed to be composed of two largely
independent functional areas, and that each functional
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Figure 4 - Application of Goel-Okumoto Model
to Entire Data Set
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area would be executed 50% of the time during operations.
In producing the estimates seen in Figure 4, the model
was applied to the entire set of failure data. This
yields an estimated failure rate of three failures per
week at week 41 of the testing phase.

The actual failure rate curve, however, is bimodal.
There is clearly a change in the test procedure after
week 14 of the testing phase. If it is known that the
software is composed of two distinct functional areas,
and that after week 14, a different portion of the
software is being tested than during the first 14 weeks,
the reliabilities of the two functional areas can be
separately modeled to yield a more accurate reliability
estim~te.

Figure 5 shows the reliability estimates for the
individual functional areas. By the end of week 14, the
expected number of failures per week is 8 f-or the first
functional area. During the interval between weeks 15
and 41, only the second functional area is tested. By
the end of week 41., the expected number of failures per
week is 1. If the software is delivered to c)perations at
the end of week 41, and assuming that the functional
areas are executed with equal frequency during each week
of testing, it is seen that during operations, 4 errors
per week can be expected while executing the first
functional area, and .5 errors per week can be attributed
to the second functional area. The resulting estimate of
4.5 errors per week is significantly different from the
3 errors per week that were estimated without taking the
change in test focus into account.

3. Significant events that may affect the failure behavior
during test:

a. Addition of functionality to the software under
test or significant modification of existing
functionality. If the software under test is still
evolving, the failure intensity may be underes-
timated during the early stages of the programts
development, yielding overly optimistic estimates
of its reliability,

b. Increases or decreases in the number of testers.
This will increase or reduce the failure frequency
(expressed in calendar time) as testers are added
or taken away from the development effort. The
time spent by each tester in exercising the
software must be recorded so that the failure
frequency or times-between-failures inputs to the
models are accurate,



c. Changes in the test environment (addition/removal
of test equipment, modification of test equipment) .
If the test equipment is modified during a test
phase to provide greater throughput, the
interfailure  times and failure frequencies recordecl
subsequently to the modification will have to be
adjustecl to be consistent with the failure data
recorded prior to the modification. For instance,
if the clock speed in the test computer is
increased by a factor of two, the test intervals
subsequent to the clock speed increase will need to
be half as long as they were prior to the speedup
if failure frequency information is being recorded.
If interfailure times are being recorded, the
interfailure times recorded subsequent to the
speedup will. have to multiplied by 2 to be con-
sistent with the times-between-failures recorded
before the speedup occurred.

d. Changes in the test. method (e.g. switching from
“white box” to ‘Iblack boxll testing, changing the
stress t.o which the software is subjected during
test) . If the test method changes during a testing
effort, or if the software is exercised in a
different manner, new estimates of the software’s
reliability will have to be made, starting at the
time when the testing method or testing stress
changed.

Interfailure times expressed in terms of CPU time are the
preferred data. However, failure frequency data is also
recommended since existing problem reporting mechanisms can often
be used. The relative ease of collecting this information will
encourage the use of reliability modeling. Currently, most JPL
problem reporting systems collect the number of failures per unit
test time interval. If your projects have existing mechanisms for
collecting software failure data during developmental testing, use
this data to obtain time-between-failures or failure frequency
data.

If failure frequency data is used, a useful length for the
test interval must be determined. This is influenced by such
considerations as the number of testers, the number of available
test sites, and the relative throughputs of test sjtes. Many
development efforts summarize their findings on a weekly basis.
For many development efforts, a week during subsystem or system-
level testing is a short enough period of time that the testing
method will not change appreciably. For the development efforts
reported on in [LYU91], [LYU91a), and [LYU91b], enough errors were
found in a week~s time during the early stages of test to warrant
recomputing the reliability.
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Many development projects require that test logs be kept
during developmental and system-level testing, although the
information recorded in these logs is generally not as accurate as
that tracked by the problem reporting system. Used as intended,
these logs can be used to increase the accuracy of the failure
frequency or interfailure time data available through the problem
tracking system being used. Without much effort beyond that
required to record failures, the following items can be recorded:

a. Functionality being tested. The functionality can be
related to items in a software build plan or requirements
in a software requirements document. The reliability for
each functional area should be modeled separately.

b. Test session start date and time.

c. Test session stop date and time.

In addition, it may be possible to collect CPU utilization data.
from the test benchts accounting facilities for each test period.
recorded.

If only one functional area is to be tested during a session,
record only one start and stop time. If more than one functional
area is to be tested, however, start and stop times should be
recorded for each functional area. If testing is being done at
more than one test site, keep a log at each test site. To
determine test interval lengths, use the test logs from all test
sites to determine the amount of testing time spent in a fixed
amount of calendar time. Count the number of failure reports from
all test sites written against that functional area in the chosen
calendar interval to determine the failure counts. These failure
counts and test interval lengths can then be used as inputs to the
software reliability model(s). Note that the reliability of each
functional area is separately determined.

8.2.4 Choosinq a Preliminary Set of Software Reliability Models

After specifying the software reliability requirements, make
a preliminary selection of software reliability models. Examine
the assumptions that the models make about the development method
and environment to determine how well they apply to the effort at
hand. For instance, many models assume that the number of errors
in the software has an upper bound. If software testing at the
subsystem level does not occur until the software is relatively
mature, and if there is a low probability of making changes to the
software actually being tested, models making this assumption can
be included in the preliminary selection (e.g. Goel-Okumoto model,
Muss Basic model). If, on the other hand, significant changes are
being made to the software at the same time it is being tested, it
would be more appropriate to choose from those models that do not
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assume an upper bound to the number of faults (e.g. Muss-Okumoto
and Littlewood-Verrall models). Many models also assume ~tperfect
debugging.11 If previous experience on similar projects indicates
that most repairs do not result in new faults being inserted into

the software , choose from those”models making this assumption (e.g.
Goel-Okumoto model, Muss-Okumoto model). However, if a significant
number of repairs result in new faults being inserted into the
software, it is more appropriate to choose from those models that
do not assume perfect debugging (e.g. Littlewood-Verrall model).

It is important to note that there is currently no known
method of evaluating these assumptions to determine a priori which
model will prove optimal for a particular development effort
[GHALY86]. Users are advised that this preliminary selection of
models will be a qualitative, subjective evaluation. After a model
has been selected, its performance during use can be quantitatively
assessed [GHALY86].  However, these assessment techniques cannot be
applied to the preliminary selection.

There are additional
models can be evaluated.
in [LYU91] are reproduced

1.

2.

3.

4.

5.

6.

Model validit~:
current failure
finish testina

criteria by which software reliability
Six model selection criteria identified
below:

Includes measurement accuracy for
intensity, prediction of the time to
with associated date and costs, and

prediction of the operational failure rate.

Ease of measurinq parameters: Includes cost, schedule
impact for data collection, and physical significance of
parameters to software development process.

Quality of assumptions: l“ncludes  closeness to the real
world, and adaptability to a specific development
environment. This is discussed in more detail. in section
8.2.8.1, “Applicability of Model Assumptions.ll

APDlicabilitv: Includes ability to handle program
evolution and change in test and operational environment.

Simplicity: In concept, data collection, program
implementation, and validation.

Insensitivity to noise: Minimal response to insig-
nificant changes in inDut data and ~arameters without
losing responsiveness to significant-differences (e.g.
change in test method, changing test scenarios) .
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7 Goel-Okumoto Y
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-----+-

Keiller-Littlewood

12 ‘Littlewood-Verrall
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14 Muss-Okumoto

15 Littlewood NHPP
L
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“Y “ signifies that a particular model passes the
evaluation criterion in a specific column

II n tt signifies that a particular model does not pass
the evaluation criterion in a specific column

II - II signifies uncertainty as to whether a model passes
the evaluation criterion in a column.

In the llResults~~  column, those models with zero or one ~tnt! are
marked as ‘Iytl (pass). Models with three or more “nft are marked
as “n” (fail). Otherwise, models are marked as ‘t-” (not sure).
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As with the model assumptions, the preliminary evaluation of models
with respect to these criteria will be qualitative and subjective.
As part of the work accomplished for the JPL study, fifteen
different models were evaluated with respect to these criteria.
The results, presented in [LYU91], are reproduced in Table 8-1
above. Users having had no practical experience with software
reliability models are advised to use the models indicated with a
“y!’ in the I’Results!) cc>lumn as a preliminary selection. Otherwise,
users may apply the above criteria to the models they have used to
make a preliminary selection.

8.2.5 ChoosinqReliability Modelinq Tool S

Having addressed the issues of model selection and data
collection, reliability modeling tools must now be selected.
Information about currently-available tools and criteria for
selecting them are given elsewhere in this book. For the JPL
study, the public-domain reliability modeling tools SMERFS, version
4, was selected. At the time of the study, the points in its favor
were:

1.

2.

3.

4.

5.

6.

7.

It implements a large number of models (9 unique models
are implemented in version 4 of this program) .

Inputs to this model can be in the form of time-between-
failures or failure frequencies.

Inputs to SMERFS can be from ASCII text files, or the
user can enter data from the keyboard. If file input is
desired, the ASCII file can be created from the
application tracking the failure data.

For many models, SMERFS allows the user to predict the
number of errors that will be found in a given time
interval. This can be used to predict failure rates in
the future, thereby allowing the user to estimate how
much more testing time will be required to achieve a
specified reliability requirement.

In estimating model parameters using the failure data,
SMERFS will provide confidence values for these param-
eters if maximum likelihood estimates are requested.

It allows the user to produce plots of actual and
estimated failure behavior, display summary statistics of
the failure clata, modify existing failure data, and
perform linear and non-linear transformations on the
failure data.

It produces plot files that can be imported into many
spreadsheet or drawing packages as ASCII text. These
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files can be easily manipulated to produce failure rate
and cumulative number of failures plots.

8. The printed documentation for SMERFS adequately describes
the capabilities of the tool and helps the user apply the
models to failure data.

9. SMERFS runs on a wide variety of platforms and operating
systems. Some of these are:

MSDOS-based machines
The Macintosh
UNIX workstations
VAX workstations
CDC Cyber

The fact that the FORTRAN 77 source code is shipped along
with the executable file allows users to compile and run
the program in almost any environment. Since nc>
extensions tc) FORTRAN 77 are used, SMERFS functionality
should remain unchanged , regardless of the environment in
which it executes.

100 The user can modify the on-line help file, since it is
shipped as a text file along with the source files.

11. SMERFS is in the public domain and can be obtained free
of charge by contacting Dr. William Farr of the Naval.
Surface Weapons Center, Code B-10, Dahlgren, VA, 22448.

Although it had many advantages, SMERFS version 4 did have
some shortcomings. The most important of these are:

1.

2.

3.

There are currently no capabilities, such as those
described in [GHALY86], to determine the applicability of
a specific model to a set of failure data. Version 5 of
SMERFS does have these capabilities

Version 4 of SMERFS does not allow the user to combine
the results of different models in the manner suggested,
in [LYU91], [LYU91a], and [LYU91b]. The public-domain
tool CASRE, described elsewhere in this book, does have
this capability. ,

The variety of plots was limited. Version 4 of SMERFS
produced plots of actual and estimated interfailure times
and failure frequencies. Reliability and cumulative
number of failures (actual and estimated) would have been
useful additional features, as would a display of
confidence bounds on these plots. However, these types
of plots are not available.
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4* The graphics quality was low. SMERFS itself produces
‘lline printerll quality plots. However, the capability of
producing a plot file that can be imported by
spreadsheets, statistics, and drawing packages alleviates
this problem.

5. The on-line help facilities were limited to descriptions
of the various models. On-line help could only be
invoked when the user wishes to execute a model.

6. The editing facility was a simplified line editor, rather
than a screen editor. In addition, the editor commands
are implemented as choices on a full-screen menu, so the
file being edited is not always visible. Switching
between the menu and the file being edited can be
disorienting.

In conclusion, SMERFS was the preferred software reliability
modeling tool, providing that it was not necessary for the user to
determine the applicability of specific models to a failure data
set in the manner described in [GHALY86]. .

8.2.6 Final Reliability Model Selection

Having investigated model assumptions, completed the
preliminary model selection, and identified tools implementing
these models, the final. model selection must now be made. More
than one model may be selected - there have been suggestions that
the results of two or three models be combined in some fashion to
yield better reliability estimates than those available from a
single model ([GHALY86], [LYU91], [LYU91a], [LYU91b]). Results of
the investigation conducted for the JPL study indicate that the
Goel-Okumoto, the Muss-Okumoto, and the Littlewood-Verrall are
applicable to a wide range of JPL development efforts. Over the
entire set of data examined for this study, an arithmetical average
of the estimates from the Goel-Okumoto, the Musa-Okumoto, and the
Littlewood-Verrall models performed consistently better than the
individual models ([LYU91], [LYU91a], [LYU91b)).

8.2.7 Model ADPlication and APplication Issues

After setting up a data collection mechanism and selecting the
model(s) and tool(s) to support a software reliability measurement
program, software reliability measurement can be started. Do not
attempt to measure software reliability during unit test. Although
observed errors may be recorded durinq this testinu Dhase, the
individual units o? code are too sma~l to make va~i~
reliability estimates. Experience with JPL data indicates
earliest point in the life cycle at which meaningful
reliability measurements can be made is at the subsystem

software
that the
software
software
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‘integration and test level. Other organizations report similar
findings. Experience gained in the JPL study, as well as empirical
evidence reported in [MUSA87], indicate that software reliability
measurement should ncjt be attempted. for a software system
containing fewer than 2000 lines of uncommented source code. No
way of analytically determining the minimum size of a software
system whose reliability can be modeled is currently known.

8.2.8 &lODEL APPLICATION ISSUF&

The following paragraphs deal with three major issues of
applying software reliability models. First of all, each model
makes assumptions about the development process. These assumptions
may not be valid for specific development efforts. The most
questionable assumptions are listed and the impacts they may have
on the accuracy of reliability estimates are discussed.

Secondly, a priori selection of the best model for a develop-
ment effort does not seem to be possible. However, it is possible
to determine the applicability of a model to a particular set of
failure observations after use of the model has started. Paragraph
8.2.8.2 summarizes the techniques described in [GHALY86] for
determining the applicability of a model to a set of failure data,
and describes ways in which the results of such an “applicability
evaluationlt  may be used to choose an appropriate model.

Finally, software that is under test may be simultaneously
undergoing change. The volume of the changes may affect the
accuracy of the reliability estimates. Paragraph 8.2.8.3 discusses
ways of dealing with evolving programs.

8.2.8.1 Amlicabilitv of Model &s&umDtions

This section explores in greater detail some of the
assumptions made by some of the more widely-used software
reliability models. These assumptions are made to cast. the models
into a mathematically tractable form. However, there may be
situations in which the assumptions for a particular model or set
of models do not apply to a development effort. In the following
paragraphs, specific model assumptions are listed and the effects
they may have on the accuracy of reliability estimates are
described.

a. Durinq testincf, the software is oDerated in a manner
similar to the anticipated operational usa~. This
assumption is often made to establish a relationship
between the reliability behavior during testing and the
operational reliability of the software.
the usage pattern during testing can vary
from the operational usage. For instance,

In practice,
significantly
functionality
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that is not expected to be frequently used during
operations (e.g. system fault protection) will be
extensively tested to ensure that it functions as
required when it is invoked.

One way of dealing this issue is to model the reliability
of each functional area separately, and then use the
reliability of the least reliable functional area to
represent the reliability of the software system as a
whole. Predictions of operational reliability that are
made this way will tend to be lower than the reliability
that is actually observed during operations, provided
that the same inputs are used during test as are used
during operations. If the inputs to the software during
test are different from those during operations, there
will be no relationship between the reliability observed
during test and operational reliability.

b. There are a fixed number of faults contained in the
~oftware. Because the mechanisms by which errors are
Introduced into a program during its development are
poorly understood at present, this assumption is often
made to make the reliability calculations more tractable.
Models making this assumption should not be applied to
development efforts during which the software version
being tested is simultaneously undergoing significant
changes (e.g. 20% or more of the existing code is being
changed, or the amount of code is increasing by 20% or
more) . Among the models making this assumption are the
Jelinski-Moranda, the Goel-Okumoto, and the Muss Basic
Models. However, if the major source of change to the
software during test is the correction process, and if
the corrections made do not significantly change the
software, it is generally safe to make this assumption.
In practice, this would tend to limit application of
models making this assumption to subsystem-level
integration or later testing phases.

c. No new errors are introduced into the code during the
correction process. Although there is always the
possibility of introducing new errors during debugging,
many models make this assumption to simplify the
reliability calculations. In many development efforts,
the introduction of new errors during correction tends to
be a minor effect. In [LYU91], several models making
this assumption performed quite well over the data sets
used for model evaluation. If the volume of software,
measured in source
correction is not a
the entire program,

lines of code, being changed during
significant fraction of the volume of
and if the effects of repairs tend to
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be limited t.o the areas in which the corrections are
made, it is generally safe to make this assumption.

d. Detections of errors are independent of one another.
This assumption is not necessarily valid. Indeed, there
is evidence that detections of errors occur in groups,
and that there are some dependencies in detecting errors.
The reason for this assumption is that it. enormously
simplifies the estimation of model parameters. Deter--
mining the maximum likelihood estimator of a model
parameter, for instance, requires the computation of a
joint probability density function (pdf) involving all of
the observed events. The assumption of independence
allows this joint pdf to be computed as the product of
the individual pdfs for each observation, keeping the
computational requirements for parameter estimation
within practical limits.

Practitioners using any currently-available models have
no choice but to make this assumption. All of the models
analyzed as part of the JPL study and reported on in
[LYU91], [LYU91a], [LYU91b] make this assumption.
Nevertheless, practitioners from AT&T, Hewlett Packard,
and Cray Research report that the models produce fairly
accurate estimates of current reliability in many
situations. If inputs to the software are independent of
each other and independent of the output, error detection
dependencies may be reduced.

8.2.8.2 petermininq Model Applicability

As previously stated, there is no known method of determining
a priori the “best” reliability model for a software development
effort. However, once use of a model has started, analyses can be
done to determine the applicability of the model to the failure
data used as input to the model. The following paragraphs sum-
marize these analysis methods, which are detailed in [GHALY86].

The prequential likelihood ratio can be used to djscredit one
model in favor of another for a particular set of failure data.
Recall that software reliability models treat the time to failure
as a random variable T~. The cumulative distribution function F~(t)
for this random variable is based upon the previous i-1 observed
times to failure tl, tz, ..,, t~.l. The probability density function
f~(t) of the random variable T~ is the time derivative of the
cumulative distribution function. For one-step ahead predictions
of T~+l, Tj+2t .,-t T~+,, the prequential likelihood is given by:

J ..

PLRn  =  ~ f,(t,)

j.j7+l
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A comparison of two models, A and B, may be made by forming the
prequential likelihood ratio PLRn = P~,A/PLnB. The reliability
practitioner believes that either model A is true with p(A) or that
model B is true with probability p(B) = 1 - p(A). The practitioner
observes the failure behavior of the system, bakes predictions
using the two models A and B, and compares the predictions to the
actual behavior via the prequential likelihood ratio. When
predictions have been made for Tj+l, Tj+z,,.,, T,+., the PLR is given by:

P L Rn  =
P(tj+*t,,.f ~j+lltj(.,., ~l,A)

P(tj.~/,+/  ‘j+lltj/-!/  ‘l/B)

Using BayesJ Rule, PLR. is rewritten as:

p(Altj.n/.,./ ~l)p(~j+n,...i  ~j+lltj,...,  tl)

PLRn  =  —
P  (~)

P(Blcj+~/*4-/  ‘l)P(~j+~/”--/  ‘j+lltj/4/  t~)

P(xtj/.,./t~)

If the initial predictions were based only on prior belief, the
second factor of the last equation is the prior odds ratio. If the
user is indifferent between models A and B at this point, this
ratio has a value of 1, since p(A) = p(B) . The last equation is
then rewritten as:

PLRn =  —WA
I-WA

This is the posterior odds ratio, where w* iS the pOSteriOr belief
that A is true after making predictions with both A and B and
comparing them with actual behavior. If PLR. -+ CQ as n + ~, model
B is discarded in favor of model A.

A model can also be evaluated to determine whether the
predictions it makes are bi,ased. One way of doing this is to draw
a u-plot. Consider the following transformation:

u~ = F~(t~)
Each u~ is a probability integral transform of the observed time to
failure t~ using the previously calculated predictor F~ based upon
t~, t~, . . . , t~.~ . In other words, u~ is the probability that the
software will fail before time t~. If each F~ were identical to the
true, but hidden, F~, the u~ would be realizations of independent
identically-distributed (iid) random variables whose values lie in
the interval [0, 1]. The closeness of F~ to F~ can be examined to
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determine the extent to which the model is biased. One way of
drawing this is to draw the cumulative distribution functions (calf)
for F~ and F~ and determine the maximum vertical distance
(Kolmogorov distance) between them. The value of the Kolmogorov
distance measures the extent to which the model is biased.
Furthermore, if the cdf for F~ is above that for F~, the model will
yield optimistic (too large) estimates for the time to failure.
Otherwise, if the cdf for F~ is below that for F~, the model!s
estimates of time to failure will tend to be pessimistic (larger
than the observed times to failure) .

Another method of analyzing a model’s bias is to form the y-
plot . When the cdf of the u~ was plotted in the u-plot, the
temporal ordering of the u~ was lost. This can cause a model which
is optimistic in the early stages, but pessimistic later on, to
appear unbiased when examining the u-plot. To examine the u~ for
trend, their temporal c)rdering must be preserved. This can be done
using the following sequence of transformations:

Xi = -ln(l - Ui)
i

E ‘j
.J..2_-Yi ~

z Xj
]=1

where n is the total number of failures observed. The cdf of the
y~ and the cdf for F~ are then drawn, as was done for the u-plot.
This y-plot reveals trends in the ui. The point at which the cdf
of the y~ departs from the cdf for Fi indicates the time at which
the estimates made by the model are biased.

Finally, a measure of the noisiness of a model!s estimates can
be made. The median variability is defined as:

E
mi - m i.l

1 mi..l I
where m~ is the predicted median of the random variable T~.
Comparing this value for two different models can indicate
objectively which model is producing the most variable predictions.
However, this does not indicate whether the variability reflects
the true variability of the actual reliability.

8.2.8.3 Dealinq with Evolvinq Software

All of the models clescribed in the preceding paragraphs assume
that the software being tested will not be undergoing significant
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changes during the testing cycle. This is not always the case. A
software system undergoing test may be simultaneously undergoing
development, with changes being made to the existing software or
new functionality being added periodically. To accurately model
software reliability in this situation, changes made to the
software have to be
handling changes to

1.
2.

3.

‘taken into account. There are three ways of
a program under test. These approaches are:

Ignore the change.
Apply the component configuration change
method.
Apply the failure time adjustment technique.

Ignoring changes is appropriate when the total volume of
changes is small compared to the overall size of the program. In
this case, the continual re-estimation of parameters will reflect
the fact that some change is in fact occurring.

The component configuration change approach is appropriate for
the situation in which a small number of large changes are made to
the software, each change resulting from the addition of indepen-
dent components (e.g. addition of the telemetry gathering and down-
linking capability to a spacecraft command and data subsystem).
The reliability of each software component is modeled separately.
The resulting estimates are then combined into a reliability figure
for the overall system.

The failure time adjustment approach is most appropriately
used when a program cannot be conveniently divided into separate
independent subsystems and the program is changing rapidly enough
to produce unacceptable errors in estimating the softwarets
reliability. The three principal assumptions that are made in
failure time adjustment are:

1. The program evolves sequentially. At any one time, there
is only one path of evolution of the program for which
reliability estimates are being made.

2. Changes in the program are due solely to growth.
Differences between’ version k and version k+l are due
entirely to new code being added to version k.

3. The number of faults introduced by changes to the program
are proportional to the volume of new code.

Figure 6 provides an example of a software system to which failure
time adjustment techniques could be applied. This figure
represents the cumulative number of errors for the system whose
failure frequencies are shown in Figures 4 and 5. Recall that.
Figures 4 and 5 show abrupt changes in the failure frequency at.
week 34. For this example, this change is attributed to the ad-
dition of new functionality to the software under test. The
testing method remains the same during the two stages.
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‘ When testing proceeds in two stages, the expected number of
failures as a function of time will follow a known curve during the
first stage (weeks 0-14 in Figure 6). The parameters of this curve
will depend on the fault content and the total amount of code being
executed in this stage. After the fourteenth week of testing (week
14 in Figure 6, denoted by t’ in the text), additional code that
implements the remainder the system is added. At this point, the
curve representing the expected number of errors will switch to the
one that would have occurred for a system in its final configura--
tion. The curve, however, is temporally translated, the amount of
translation depending on the number of failures that were exper--
ienced during the first test stage. The translation can be
determined by modeling the first and second stages independently,

If the Goel-Okumoto  model is used, the parameters for the
first and second stages are as follows:

Second Stage_..=JL==.=.=-===-=,l-:=._413 .0461496 __lJ——.

G A L I L E O  C D S  Fllght S o f t w a r e
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Figure 6 - Cumulative Number of Errors for a
Spacecraft Control and Data Subsystem
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In the first stage, then, the expected number of failures is given
by #l(t) = al(l - exp(-bit)). Substituting the values of a and b in
the table above, and using a value of 14 for t, the expected number
of errors is 156. Now assume that testing had started using the
final configuration, represented by the second stage. The expected
number of errors would be given by Hz(t) = az(l - exp(-bzt)), using
the values of a and b given for the second stage. For the second
stage, the number of failures expected to be observed during the
first stage (156) would be observed in 10 time units, denoted by
t’, rather than in 14. Therefore, in going from the first to the
second stage of testing, the expected number of failures, ~(t),
will be a translated version of the expression for pz(t). The
amount of translation is given by t’ - t’, which in this case is 4.

U(t) = a2(l - exp(-bz(t - (t’ - t’))))
or

p(t) = a2(l - exp(-bz(t - 4)))

The following general expression denotes the transformation
that will take a value of the time to failure tl to the adjustec~
value t~:

t~ = Q]z(t~: I], 32, Ml, M2, &))

where

t~ = the interfailure time t~, observed in the unchanged
system, transformed to the expected interfailure time in the
changed system.

II = the total number of executable instructions (developed
and inherited) for stage 1..

Iz = the total number of executable instructions (developed
and inherited) for stage 2.

AIl = the number of executable
stage 1.

A12 = the number of executable
stage 2.

m) = parameters of the model for

instructions developed for

instructions developed for

the first stage of testing.

The specific expression for the transformation deDends on the
software reliability model that is used. Once the adj-usted failure
times ti
are used

The
phase in

have been found, these t~, rather than the unadjusted t~,
in making reliability estimates in the future.

two-stage transformation can be generalized to a testing
which there are more than two stages. For two testing
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stages k and 1, stage k preceding stage 1, the transformation is
written as:

The parameters of this transformation have the same meaning as for
the two-stage transformation. Specific forms of this trans-
formation for the Muss Basic and Muss-Okumoto models are given
below. The form for the Muss Basic model is:

I

{

= ~1.nl - Ek[l - ~ -&ti
‘i $kIk A II

1}

4= the failure intensity decay factor for stage k of the
testing effort.

1~ = the total number of executable instructions (developed
and inherited) for stage k.

11 = the total number of executable instructions (developed
and inherited) for stage 1.

AIk = the number of executable instructions developed for
stage k.

AIl = the number of executable instructions developed for
stage 1.

For the Muss-Okumoto model, the failure transformation time is:

0, = the failure
0, = the failure

o= ~o

intensity decay parameter for staqe k, and
intensity

The relation of @ to @ or
current practice. Further
can be found in [MUSA87].

~ Experimental Results

decay- parameter for stag: 1. “

ok to fll cannot be determined using
details on failure time adjustment

8.3.1 Com~arison of Individual Models

During the course of the JPL study, we found that it would be
possible to apply software reliability models software development
efforts at JPL. The major difficulty encountered was collecting
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the failure history data described in section 8.2.3, although we
did find that many development efforts are already set up tc)
collect this type of information. All that would have to be done
is to enforce requirements for using the mechanisms already in
place.

we found that there was no one “besttr model for the
development efforts that were studied. This is consistent with the
findings reported in [GHALY86]. The following tables summarize the
analysis of model applicability for the JPL efforts. For each
development effort, the models applied were evaluated with respect
to prequential likelihood, model bias, bias trend, and model noise.
Each of these criteria was given equal weighting in the overall.
ranking. The abbreviations used in the tables are:

o DU - Duane model
o GO - Goel-Okumoto model
o JM - Jelinski-Moranda model
o LM- Littlewood model
o LV - Littlewood-Verrall model
o MO - Muss-Okumoto model
o PL - Prequential Likelihood

Measure JM GO MO DU LM LV

PL 6 3 2 4 5 1

Bias 5 3 3 2 5 1

Trend 5 3 2 6 4 1

Noise 5 3 2 1 5 4

Overall 6 3 2 4 5 1
Rank

Model Rankings for Flight System 1

Measure JM GO MO DU LM LV

PL 2 4 5 6 2 1

Bias 3 3 5 1 6 2

Trend 3 4 6 2 4 1

Noise 3 2 1 5 4 6

Overall 2 3 5 4 6 1
Rank

Model Rankings for Flight System 2
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Measure JM GO MO DU LM LV

PL 3 2 5 6 2 1

Bias 3 3 1 2 5 6

Trend 3 2 5 6 3 1

Noise 5 4 3 1 5 2

Overall 3 2 3 5 5
Rank

1

Model Rankings for Flight Subsystem 1

Measure JM GO MO DU Ill LV

PL 3 3 3 1 3 2

Bias 4 4 2 1 2 6

Trend 3 3 3 2 3 1

Noise 1 1 1 5 4 6

Overall 3 3 1 1 5 6
Rank

Model Rankings for Flight System 3

Measure JM GO MO DU LM LV

PL 1 4 1 6 1 5

Bias 1 1 1 6 1 5

Trend 1 3 4 5 1 6

Noise 3 2 1 5 4 6

Overall 1 4 2 5 2 5
Rank

Model Rankings for Ground System 1.
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8.3.2 Discussion of Results

From the tables above, it’s easy to see that a model that
performs well for one development effort may do poorly in another.
For instance, the Littlewood-Verrall model performs very well for
the first three data sets - in fact, it out-performs all of the
other models. However, it comes in last for the remaining two
development efforts. This inconsistency is repeated for the other
five models, as well. There were no clear differences between the
development processes for the flight systems and subsystems,
certainly none that wcmld favor the selection of one model over
another prior to the start of test. These findings suggest that
multiple models be applied to the failure data during the test
phases of a development effort, preferably models making different
assumptions about the error detection and removal processes. In
addition, the models should be “continually evaluated for
applicability to the failure data. The model or models ranking
highest with respect to the evaluation criteria should then be
chosen for use in predicting future reliability. The criteria we
suggest are the same as those described in [GHALY86], although
other criteria, such as traditional goodness-of-fit tests or the
Akaike Information Criterion may also be used.

~ Linear Combinations of Model Results

Our other finding was that linear combinations of model
results appear to provide more accurate predictions than the
individual models themselves. We adopted the following strategy in
forming combination models:

1. Identify a basic set of models (the component models).
If you can characterize the testing environment for the
development effort, select models whose assumptions are
closest to the actual testing practices.

2. Select models whose predictive biases tend to cancel each
other. As previously
mistic or pessimistic

3. Separately apply each

4. Apply criteria youlve
component models (e.

described, models can have opti--
biases.

component model to the data.

selected to weight the selected
9. chanqes in ‘the Dreauential.

likelihood) and fen” the combination model fo-r tfie final.
predictions. Weights can be either static or dynamically
determined.

In general, this approach is expressed as a mixed distribution,
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f,(t) =jjv]fj(t)
J-1

where n represents the number of models, the sum of all of the
weights Wij is 1, and
density function

f ~j(t) represents the predictive probability
for the jcth component model, given the i-l

observations of failures have been made.

For the JPL failure data, the combination models often
outperformed the other six models that were evaluated with respect
to the criteria identified and described in the preceding sections.
We experimented with three types of combinations:

1. Statically-weighted combinations.
2. Dynamically-weighted combinations, in which weights are

determined by comparing and ranking model results.
3. Dynamically-weighted combinations, in which weights are

determined by changes in model evaluation criteria.

These types of combinations are further described in the following
paragraphs.

8.4.1 Statically -Weiqhted Linear combinations

Two types of statically-weighted combinations were formed,
The first combination, the Equally-Weighted Linear Combination
(ELC) model, was formed by assigning equal weights to the Goel--
Okumoto, Muss-Okumoto, and Littlewood-Verral models. Because these
weights remain constant throughout the modeling process, thif;
combination is very easy to form if the results from the component
models are available. Over the failure data sets that were
analyzed, the ELC model performed surprisingly well.

8.4.2 Wei.uht Determination Based on Rankinq Model Results

Combination models may produce more accurate results if the
weights are dynamically assigned rather than remaining static:
throughout the modeling process. One way of dynamically assigning
weights is based on simply ranking component model results. If a
combination model contains “n” components, choose a set of “n”
values that can be assigned to the components based on a ranking of
model results. One of the combinations that we experimented with
was the Median-Weighted Linear Combination (MLC) , which was
composed of the Goel-Okumoto,  Littlewood-Verrall, and Muss-Okumoto
models. For each failure, the component models would be run, and
the results of the models would then be compared. The models
predicting the highest and lowest times to the next failure would
then be given
in the middle

weig-hts of O in the combination, while the prediction
would be given a weight of 1.
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The other combination of this type with which we experimented
was the Unequally-Weighted Linear Combination (ULC) model. This
was formed with the same components as the MLC model - the only
difference was that the component models producing the highest and
lowest predictions of the time to the next failure were given
weights of 1/6 rather than O , while the component making the middle
prediction was given a weight of 4/6.

This type of combination model is not quite as easy to form as
the ELC model previously described, but does not require the more
complicated calculations required for the last type of combination
with which we experimented.

8.4.3 Weiqht Determination ~sed on Chanqes in Prequentia~
Likelihood

The last type of combination with which we experimented was
one in which weights were both dynamically determined and assigned.
The basis for determining and assigning weights was changes in the
prequential likelihood (see chapter TBD) over a small number of
observations. There are two ways in which weights can be computed
for each model. First, we can look at changes in the prequential
likelihood every N observations, and recompute the weights for each
combination after every Nth observation. The second way is to
recompute weights after every observation, using the changes in the
prequential likelihood over the most recent N observations to
compute and assign the weights. We refer to the first type of
combination as a DLC/F/N, which stands for Dynamic Linear
Combination with a Fixed window of N observations. The second type
of combination is called a DLC/S/N, in which S refers to the
sliding window, N observations wide, which is used to recompute the
weights.

8.4.4 Discussion of Results

We found that over the JPL failure data sets that we analyzed,
as well as for historical failure data reported in [MUSA80], the
combination models consistently outperformed the other models that
we evaluated. The results are given in the tables on the next
page. For the combinations with we worked, which were formed using
the Goel-Okumoto, the Littlewood-Verrall, and the Muss-Okumoto
models, the combination models sometimes outperformed all of their
component models, and never performed worse than the worst
component model. The ELC and DLC models performed more
consistently than the models. We believe that the ELC model’s
performance is due to the equal weighting. By contrast, the
weighting schemes for the ULC and MLC models may allow weight
assignments which do reflect how close the component model results
are to one another. Finally, the superior performance of the DLC
model is because the weights for each component are dynamically
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determined, and are closely related to the likelihood of one
component producing more acc-urate predictions than another.

MO DU LM LV ELC ULC

1 6 8 6 4 2

6 7 8 1 4 5

4 9 9 6 4 3

6 7 9 2 2 4

10 6 9 4 1 3

6 8 10 1 1 1

8 1 9 10 1 5

1 9 3 10 8 7

6 7 10 5 1 3
lngs using all four crlte

MLC DLC

Data II
Muss data set 1 13.019 3 5

2

1

Muss data set 2

*

9 10

Muss data set 3 6 8

JPL flight system 1 1.0 7

JPL flight system 2 5 7

2

2

5 1

8 2
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